Monthly prediction of streamflow using data-driven models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven models for monthly streamflow time series prediction

C. L. Wu and K. W. Chau* 2 Dept. of Civil and Structural Engineering, Hong Kong Polytechnic University, 3 Hung Hom, Kowloon, Hong Kong, People’s Republic of China 4 5 *Email: [email protected] 6 ABSTRACT 7 Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 Artificial Neural Networks (ANN), are widely applied to hydrologic time series predi...

متن کامل

predicting streamflow using data-driven model and time series

accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. river flow simulations to determine the future river flows are important and practical. given the importance of flow in the coming years, in this research three stations: haji qooshan, ghare shoor and tamar in gorganrood cachment were simulated in 2002-2011. to s...

متن کامل

Monthly streamflow forecasting using Gaussian Process Regression

Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Austin, Austin, TX 78713, United States Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha, Ch...

متن کامل

Evaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station

prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...

متن کامل

Improving Groundwater Flow Model Prediction Using Complementary Data-driven Models

Current analyses of groundwater flow and transport typically rely on a physically-based model (PBM), which in its essence is a simplification of reality and is thus subject to error and uncertainty from multiple sources, such as parameter error, conceptual model error, and input data error. The model uncertainty can be difficult to quantify, and is propagated to the prediction. In this study, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Earth System Science

سال: 2019

ISSN: 2347-4327,0973-774X

DOI: 10.1007/s12040-019-1170-1